
Physics based
preconditioning in BOUT++

Ben Dudson

York Plasma Institute, University of York, UK

benjamin.dudson@york.ac.uk

4th September 2013

mailto:benjamin.dudson@york.ac.uk

25 / 2

Implicit schemes and preconditioning
● Implicit methods used to solve stiff sets of equations. A high-order

BDF scheme is used, but as an illustration a first-order scheme
(Backwards Euler) is:

● Newton-Krylov solvers used to solve this nonlinear system of
equations

● Typically f is ~10 – 100 million variables, so J is a large matrix

● Fortunately we never need to calculate or store J. Instead we use
Jacobian Free method:

● Fast time scales make this equation more singular and harder to
solve → We need a preconditioner

25 / 3

Physics-based preconditioning
● Typical plasma problems have a wide range of timescales

→ They are “stiff”

● In drift-reduced models these are typically due to shear Alfven
waves, and parallel heat conduction

● Assumption of equilibrium
flux-surfaces allows reduction
of a 3D problem to multiple
1D parabolic solves along
field lines

● Can be solved efficiently using
FFT + Tridiagonal solve

B Dudson, S Farley, L.C. McInnes
ArXiv: plasm-phys/1209.2054

25 / 4

Physics-based preconditioning
● Typical plasma problems have a wide range of timescales

→ They are “stiff”

● In drift-reduced models these are typically due to shear Alfven
waves, and parallel heat conduction

● Assumption of equilibrium
flux-surfaces allows reduction
of a 3D problem to multiple
1D parabolic solves along
field lines

● Can be solved efficiently using
FFT + Tridiagonal solve

● For ELM simulations, results
in 10 – 100 x speedup

B Dudson, S Farley, L.C. McInnes
ArXiv: plasm-phys/1209.2054

25 / 5

Preconditioning basics

● To take a timestep with an implicit method, we solve a nonlinear
problem using a Newton iteration

● Each iteration requires the solution of a large linear problem
Ax = b

● A preconditioner P is an approximate inverse of A which can be
applied to the left of the equation:

PAx = Pb
or on the right:

A P (P-1 x) = b

● So long as P is invertible (non-singular), the result x should be
independent of choice of P → we can make simplifications in deriving P

● P is chosen to improve the condition number of A, reducing the
number of iterations needed to find a solution

● The key is to do this efficiently so that the cost of P is minimised

25 / 6

Preconditioning in BOUT++

Currently supported by the cvode, ida, and petsc(>=3.3) solvers

→ see examples/test-precon for simple example

Define a function to calculate P * vector multiply

gamma is (approx.) the timestep (depends on method)
delta only needed for constraints. Ignore here

● System state is stored in variables, as for RHS function

● Input vector is in “time-derivatives” ddt(variables)

● Output vector also in ddt(variables)
→ The above function is the identity operator

int precon(BoutReal t, BoutReal gamma, BoutReal delta) {
 return 0;
}

25 / 7

Physics based preconditioning

● There are many ways to derive a preconditioner, which can be
broadly split into two categories:

● General, black box methods, which use the structure of the matrix
in a generic solver e.g. Jacobi, SOR, GAMG, ...

● Physics based methods, which use some physical insight to simplify
the equations solved by the preconditioner, to focus on the fastest
timescales

● Here we will look at a form of preconditioner popularised by
L.Chacon (ORNL)

● See talk from 2011 BOUT++ workshop
https://bout.llnl.gov/pdf/workshops/2011/talks/Chacon_bout2011.pdf

https://bout.llnl.gov/pdf/workshops/2011/talks/Chacon_bout2011.pdf

25 / 8

Recipe for physics-based
preconditioning

1)Simplify the equations

2)Calculate Jacobian. Partial derivatives of RHS w.r.t variables

3)Factorise the matrix to be solved

4)Use an approximation to decouple parallel and perpendicular
derivatives

5) Implement using the same operators as the time-derivative
evaluation. Implemented as another call-back function

6)Tweak, add and remove terms to optimise performance

25 / 9

1D wave example

See examples/test-precon and user manual

● Start with a wave equation

(Example used in L.Chacon talk, 2011 workshop)

● Calculate Jacobian (partial derivatives)

25 / 10

1D wave example

● Block factorise this matrix

● For this problem, this becomes:

● These operators can now be implemented in BOUT++

Input and output vector in 'ddt' variables

25 / 11

1D wave example

● Apply matrices right to left

● Key step is the inversion of P
schur

, which must be efficient

25 / 12

1D wave example

● To use this preconditioner, we need to pass the function pointer to the
solver during initialisation

● Tell the solver to use the preconditioner in the input options

● Currently supported by cvode (SUNDIALS) and petsc (>=3.3) solvers

25 / 13

1D wave example: Instructions
First we need to compile BOUT++ with SUNDIALS and/or PETSc. See
BOUT++ user manual for how to install these packages.

For now, using SUNDIALS and PETSc already installed on Hopper

1) Log into Hopper

2) Run workshop configuration script:

 cd BOUT-2.0
 source configure.workshop

25 / 14

1D wave example: Instructions
First we need to compile BOUT++ with SUNDIALS and/or PETSc. See
BOUT++ user manual for how to install these packages.

For now, using SUNDIALS and PETSc already installed on Hopper

Configuration summary

 FACETS support: no
 PETSc support: yes (version 3.3, release = 1)
 PETSc has SUNDIALS support: no
 IDA support: yes
 CVODE support: yes
 NetCDF support: yes
 Parallel-NetCDF support: no
 PDB support: no
 Hypre support: no
 MUMPS support: yes

→ make

25 / 15

1D wave example: Instructions

First we need to compile BOUT++ with SUNDIALS and/or PETSc

 source configure.workshop

Re-compile the BOUT++ library

 make

Change to the test-precon directory, compile and run

 cd examples/test-precon
 make

1.000e+01 115 7.70e-01 -5.4 0.0 15.9 1.8 87.7
| Step 1 of 10. Elapsed 0:00:00.0 ETA 0:00:06.9
CVODE: nsteps 42, nfevals 66, nniters 65, npevals 0, nliters 74
 -> Newton iterations per step: 1.547619e+00
 -> Linear iterations per Newton iteration: 1.138462e+00
 -> Preconditioner evaluations per Newton: 0.000000e+00

25 / 16

1D wave example: Instructions

First we need to compile BOUT++ with SUNDIALS and/or PETSc

 ./configure --with-sundials --with-petsc

Re-compile the BOUT++ library

 make

Change to the test-precon directory, compile and run

 cd examples/test-precon
 make

Try turning on and off preconditioning in BOUT.inp options:

[solver]
type = cvode # Need CVODE or PETSc
use_precon = true # <----

25 / 17

Using PETSc for diagnostics

● One of the nice features of PETSc is its extensive monitoring
capabilities, which help in optimising preconditioners

● First set the solver type to petsc, either in BOUT.inp or command line

● PETSc options can then be set on the command line e.g. to select the
theta method with = 0.5 (i.e. Crank-Nicholson)

● Fixed timestep method using BOUT++ output timestep

[solver]
type = petsc

solver:type=petsc

-ts_type theta -ts_theta_theta 0.5

timestep=10

25 / 18

Using PETSc for diagnostics

● Monitoring can be enabled for various components of PETSc

Time stepping 'TS'

Nonlinear solver 'SNES'

Linear iterative solver 'KSP'

-ts_monitor

-snes_monitor

Command-line switch

-ksp_monitor

25 / 19

1D wave example: Instructions (2)

Modify the BOUT.inp file to use PETSc time stepping solver

Run with command-line options

[solver]
type = petsc
use_precon = true

-ts_type theta -ts_theta_theta 0.5 -{ksp,snes,ts}_monitor

0.000e+00 1 1.08e-01 1091.8 300.8 65.4 217.0 -1575.0
| Step 1 of 50. Elapsed 0:00:00.0 ETA 0:00:05.3 Wall 3:59:60.00 TS dt 1000 time 0
 0 SNES Function norm 5.814140098646e-05
 0 KSP Residual norm 5.814140098646e-05
 1 KSP Residual norm 5.814111317072e-05
 2 KSP Residual norm 3.183140943212e-05
 3 KSP Residual norm 3.183140939101e-05
 4 KSP Residual norm 2.372086517703e-05

25 / 20

Reconnect-2field example

● A 3D slab forced reconnection problem

● Contains shear Alfven wave with short timescales relative to long
timescale of reconnection process → Benefits from preconditioning

● Contains basic physics present in most plasma problems of interest
→ this same preconditioner can be applied to many models,
including elm-pb 3-field model

25 / 21

Reconnect-2field example

Follow same procedure as for 1D wave example

1) Simplify equations

2) Calculate Jacobian analytically

25 / 22

Reconnect-2field example

Follow same procedure as for 1D wave example

1) Simplify equations

2) Calculate Jacobian analytically

3) Factorise

25 / 23

Reconnect-2field example

Follow same procedure as for 1D wave example

1) Simplify equations

2) Calculate Jacobian analytically

3) Factorise

4) Simplify to decouple parallel and perpendicular

Can be solved using InvertPar solver:

25 / 24

Reconnect-2field example

Follow same procedure as for 1D wave example

1) Simplify equations

2) Calculate Jacobian analytically

3) Factorise

4) Simplify to decouple parallel and perpendicular

5) Implement in BOUT++

InvertPar *inv;

inv = InvertPar::Create();
inv->setCoefA(1.0);

inv->setCoefB(-SQ(gamma*Bxy)/beta_hat);
ddt(Upar) = inv->solve(Upar1);

25 / 25

Exercises

1) Run the test-precon example for wave equation using petsc solver
with and without preconditioner

2) Vary the timestep, and test the effectiveness of the preconditioner.
Note the damping of the wave once timesteps become large
→ A common effect of implicit timestepping methods on unresolved
timescales

3) Try the reconnect-2field test case, with and without
preconditioning, using cvode and petsc solvers

4) Try preconditioning options in elm-pb example

5) Try adding a preconditioner for the diffusion test case
examples/conduction

